Solutions should show all of your work, not just a single final answer.

3.3: Derivatives of Trigonometric Functions

1. Compute the derivative of each function below using differentiation rules.

(a)
$$f(x) = x^3 \cos x$$

(b)
$$f(x) = \frac{1 + \sin x}{1 + \cos x}$$

(c)
$$f(x) = e^x \tan x$$

(d)
$$f(x) = \frac{\sec x}{\sqrt{x}}$$
 (Compute (d) in **two ways**, using (i) the quotient rule and (ii) the product rule.)

2. Find the equation of the tangent line to the curve $y = \sin x \cos x$ at $x = \frac{\pi}{4}$. (Your coefficients must be exact, not approximations.)

3. Find the higher derivative $\frac{d^{2017}}{dx^{2017}}(2\cos x)$ by finding the first eight derivatives and observing the pattern that occurs.

- 4. Determine the following limits by making a change of variables to allow you to use the relation $\lim_{t\to 0}\frac{\sin t}{t}=1$.
 - (a) $\lim_{x \to 0} \frac{\sin 4x}{x}$

(b) $\lim_{x \to 0} \frac{\sin 7x}{5x}$

3.4: The Chain Rule

5. Compute the derivative with respect to x of each function below using differentiation rules.

(a)
$$f(x) = (x^3 - x + 1)^{10}$$

(b)
$$f(x) = \sqrt{x^3 + 4x}$$

(c)
$$f(x) = e^{ax} \cos(bx)$$
 for constants a and b

(d)
$$f(x) = \left(\frac{e^x}{3-x}\right)^8$$

(e)
$$f(x) = \sin^2(x) - \sin(x^2)$$

6. Differentiate the functions below with respect to t, where r = r(t) is a function of t.

(a)
$$(r^2+1)^4$$

(b) $\sin(2r) - 2\sin r$

(c) e^{r^2+ar+b} for constants a and b.

7. If f'(0) = 5 and F(x) = f(3x), what is F'(0)?

8. T/F (with justification) If f(x) is differentiable, then $\frac{d}{dx}(f(\sqrt{x})) = \frac{f'(x)}{2\sqrt{x}}$.

3.5: Implicit Differentiation

9. Find $\frac{dy}{dx}$ using implicit differentiation. Your final answer may involve both x and y.

(a)
$$x^2y - axy^2 = x + y$$
 where a is a constant.

(b)
$$\sin(x+y) = x + \cos(3y)$$

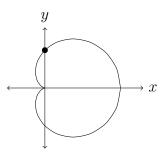
(c)
$$e^{xy} = x^2 + y^2$$

(d)
$$x = \arctan(y^2)$$

10. Use implicit differentiation to find an equation of the tangent line to the curve

$$x^2 + y^2 = (2x^2 + 2y^2 - x)^2$$

at the point (0, 1/2). **Note**. The graph of this equation is known as a cardioid, shown below. It's not the graph of a function, and this is where implicit differentiation can be helpful to us.



11. On the ellipse $x^2 + 9y^2 = 9$, find $\frac{d^2y}{dx^2}$ using implicit differentiation. Your final answer may involve both x and y.

